
www.manaraa.com

DOCUMENT RESUME

ED 396 680 IR 017 856

AUTHOR Holt, Richard C.
TITLE Object-Oriented Programming in High Schools the

Turing Way.
PUB DATE 94

NOTE 9p.; In: Recreating the Revolution. Proceedings of
the Annual National Educational Computing Conference
(15th, Boston, Massachusetts, June 13-15, 1994); see
IR 017 841.

P1.4. TYPE Guides Classroom Use Teaching Guides (For
Teacher) (052) Reports Descriptive (141)

Speeches/Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Science Education; *Educational Objectives;

Foreign Countries; High Schools; Instructional
Materials; *Learning Modules; Programming;
*Programming Languages

IDENTIFIERS *Object Oriented Programming

ABSTRACT
This paper proposes an approach to introducing

object-oriented concepts to high school computer science students
using the Object-Oriented Turing (00T) language. Students can learn
about basic object-oriented (00) principles such as classes and
inheritance by using and expanding a collection of classes that draw
pictures like circles and happy faces. Materials are outlined for a
two-week teaching unit which support this approach. The units cover:
(1) three foundational 00 concepts: objects, classes and inheritance;
(2) diagrams and relations; (3) software development environments;
(4) the OOT language and environment; (5) OOT in an undergraduate
curriculum; and (6) OOT at the high school level. (Contains 17
references.) (Author/BEW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

www.manaraa.com

U S DEPARTMENT OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION

CENTER (ERIC)
O This document has been reproduced as

received Irom the person 0, organilation

originating it

O Minor changes have been made to

Improve reproduction quality

Points ol view Or opinions stated in this
document do not necessarily represent

official OERI position or policy

-PERMISSION TO
REPRODUCE THIS

MATERIAL HAS BEEN GRANTED
BY

Done lla Ingham

TO THE EDUCATIONAL
RESOURCES

INFORMATION
CENTER (ERIC)

Paper (T4-201A)

Object-Oriented Programming in High Schools the
Turing Way

I:-
0

200

Ricbard C. Holt
Department of Computer Science
Unizersity of Toronto
8 King's College Road
Toronto Canada M55 1A4
(416) 978-8726
Fax. (416) 978-4765
boll@csri.loronto.edu

Key words: teaching programming, object-oriented programming, computer
science education, inheritance, teaching unit, Turing

BEST COPY MAILABLE

National Educational Computing Conference 1994, Boston, MA

www.manaraa.com

Abstract
This paper proposes an approach to introduce object-oriented concepts to high school students using the Object-

Oriented Turing language. The students learn about the concepts of objects, classes and inheritance by using and expanding a
collection of classes that draw pictures such as drcles and happy faces. Materials for a two-week teaching unit have been
developed to support this approach.

Introduction
There is a race to develop new software to meet the ever increasing capacity of hardware. Hardware capacity, in terms

of both speed Prld memory, continues to double approximately every two years. Those individuals and countries with the
expertise to deselop such software have the potential to realize great technological and economic gains.

This continuing demand for software requires new methods of development that help solve the central problem of
software creation. The basis of the problem lies In the inherently complex nature of software. What is needed are methods
that help us better understand and control the software being developed. The advent of structured programming some years
ago was a large step in the direction of controlling this complexity. Object oriented (00) programming now promises similar
gains, because it divides software into distinct parts, called "objects" which communicate only in rigidly specified ways.

After reviewing the key principles of object oriented programming that our students should learn, this paper discusses
the Object-Oriented Turing system, which was developed to support the teaching of programming and software engineering.
Next comes a discussion of the use of this system in teaching 00 ideas across a university curriculum. Finally, the paper
presents experience using of the system with high school students and suggests how the system may be useful in high school
Computer Science courses.

Principles of 00 that We Should Teach
In this section, we will cover the key 00 principles [Cox 87, Booch 91, Budd 91, Meyer 881 that a student should learn.

It should be emphasized that the ideas of object orientation reach well beyond computer programming. Indeed, we should
think of the 00 approach as a method of problem solving [Yoder 19931, which applies well to programming.

Three Foundational 00 Concepts: Objects, Classes and Inheritance
Objects

The first and most Important concept in 00 is called information hiding. Long before 00 became pcipular, this concept
was recognized as the "black box" principle. A black box is an item, such as a radio, that is understood in terms of its inputs
and outputs and not by its internal construction. For the radio, its buttons and knobs characterize its input and the sound it
produces characterizes its output. In 00 terminology we refer to a black box as an "object". In terms of software, the essence
of an object or black box Is that we hide data (and other internal implementation details) in a "box" and all that we can
manipulate or observe from the outside is the externally visible interface, mainly the exported subprograms (these are called
methods). 00 languages prAde syntactic mechanisms to enforce this hiding.

Classes
The second foundational concept in 00 is the idea or a "class". A "class" of objects is a set of obects all of which are

the same, or sufficiently the same for our purposes. From a programming point of view, a class is a template from which we
can instantiate or replicate objects. Using our previous example, a class can be thought of as the design of a radio, from
which we can make many individual radios. In large software systems, we make constant use of software ot ;ects, such as files
and windows, which are (or are essentially) instances of classes. To make the concept of classes clear to the student, we
need exercises that use many objects. The book An Introduction to Object-Oriented Programming [Budd 911 gives a good
example of the use of objects, namely, a program that supports the game of solitaire using a class of playing cards and a class
of stacks of card .

Inheritance
The third key 00 concept Is called "inheritance". Class D inherits from class C if class I) contains all the items of

interest that C contains. For example, consider a new radio design D, that is just like an old design C, except D adds a new
knob that activates a new external plug for ear phones. In this case, we say D inherits from C. We say D is a C,meaning that

we can use a radio of &sign D for all the same purposes for which we am use a radio of design C.

There are actually two ways in which an inheriting class D can be different from its parent class C. First, it can extend or
add to the parent class. For example, a new subprogram or data field can be added. Second, it can change or override
certain kinds of items in the parent. The power button on the radio might be changed (overridden) to turn on a light on the
radio, as well as turning on the internal circuits.

"Recreating the Revo lutiOn" 201

www.manaraa.com

Overriding allows us to create similar but significantly different objects. For example, all objects that are Macintosh files
have much in common, but the effect of opening a particular file depends on the kind of file we open. For example, opening a
HyperCard file is quite different from operting a Word Perfect file. This is because the open operation has been effectively
overridden for the various kinds of files. We say that Macintosh files are polymorphic because they react in varying ways to
the same operations.

These are the three basic concepts of 00 (objects, classes and inheritance). In this discussion we have used the
metaphor of a radio and its design. We now turn to diagrammatic conventions for representing 00 concepts.

Diagrams and Relations
There are a number of important relationships among objects and classes, and these are best understood using

diagrammatic conventions. At the level of objects (instances), the two key relations are bas a and uses. Figure 1 gives a
diagram of an Account Manager object and a Check Book object. The arrow from the Account Manager to the Check Book
indicates that the Account Manager "uses" (calls) the Check Book. The Check Book object "has a" (contains) internal
variables (a ledger, which is an array of records that keep track of checks and withdrawals) and two externally visible
subprograms (Write Check and Make Withdrawal). The protrusion of Write Check and Make Withdrawal from Check Book
indicates that they are yisible outside of Check Book. To keep the diagram simple, we do no, snow the items contained in the
Account Manager.

Account Manager Check Book

Ledger containing

records of checks and

withdrawals

Write Check I

Make Withdrawal I

Figure 1. Example of diagrammatic conventions for objects,
showing the "uses" relation and the "has a" relation.

Among classes, the most important relation is "inherits", as illustrated in Figure 2, which shows that radio design D
inherits from radio design C. Another essential relation is "instance or'. For example, a particular radio object R, might be an
instance c! radio class D.

202 National E.ducational Conpuling Cotrierence 1991, Boston, MA

www.manaraa.com

Basic design of radio

inherits

D
Extended design of

radio

instance of
A particular radio

Figure 2. Diagrammatic convention for classes and objects, showing the "inherits" and "instance of' relations.
Rectangular boxes are objects. Rounded boxes are classes.

Students will understand 00 ideas much better when they have mastered these diagrammatic techniques. (There are
many diagrammatic conventions; the details of the one used for teaching are not important) A student should be able to
visualize a given program's structure in terms of these diagrams and conversely, be able to create a program that has been
designed using thoe diagrams.

The reason these diagrams are so useful for learning, Is that they use our visual sensibilities to represent a rich set of
ideas. These ideas include the relations of "has a", "uses", "is a", and "instance of' among objects and classes. These
diagrams concentrate on the software's structure, aBovving us to suppress hnplementation detail to better understand
program design.

Software Development Environments
One of the most important ideas emerging from the Smalltalk language is that a programming environment based on

appropriate principles, can significantly improve the way we program. A Smalltalk ensironment includes on-line libraries. We
can browse II t rough these libraries of re-usable classes and experiment with them with great facility. Largely because of this.
Smalltalk encourages rapid prototyping to a degree that has not been approached in most languages. Turbo (Borland)
environments for Pascal and C++ provide integrated environments that expedite the edit-compile-link-debug cycle.
Compared with those emironments, the Smalltalk environment has the advantage of supponing larger scale programming, in
which off-the-shelf components can be assembled into new programs.

Missing from both Smalhalk and Turbo environments are tools that are commonly called CASE (Computer Aided
S)ftware Engineering) facilities. These tools provide machine assistance for the diagrammatic approach that we have just
discussed. The student's learning can be gready advanced if these tools are asailable in an integrated environment which
ideally can generate diagrams from software, can generate skeletal software from diagrams, and can check that the diagrams
and software are consistent. The 00T ensironment, which is described below, provides both diagrammalic capability and on-
line re-use libraries.

Software (levelopment environments (SDEs), as exemplified by Smalltalk, support a method of sofm are creation that is
inherently faster and better than is possible using older paradignis. Those paradigms were limited to colkoions of tools such
as editors, compilers, linkers, and debuggers.

It is clear that the fundamental concepts of 00 are closely related to ideas such as diagrammatic conventions, software
development environments and software re-use. We will now discuss 001, which is a language and environment suitable for
teaching 00 ideas.

The OOT Language and Environment
The C++ and Sntalhalk languages are perhaps the most commonly mentioned languages for supporting the teaching of

00 concepts. Other languages which arc good candidates for teaching 00 concepts include Objective C, Turbo Pascal with
00 extensions, Eiffel, Modula 3, and aOS. We will not discuss these languages in any detail, hut refer the reader to
discussions of 00 languages appearing in the literature IBudd 91, Booch 911. In this section \se will give an overview of the
Object-Oriented Turing language and software development system

"Recreating the RetioluttOn" 203

www.manaraa.com

The OOT software development environment was designed for use In teaching. It has evolved from the Turing language
Ilia 881 which is a Pascal-like language that is very easy to learn. Turing is now used In 30 universities and in half of the
high schools (about 400 schools) in the Province of Ontario, where It Is used on PCs and Macintoshes. The Turing
implementation used in high schools provides an Integrated edit-compile-run system. 001 extends the basic Turing system by
providing more advanced programming features, including 00 features, and a sophisticated software development
environment. The 001 environment, up to now, has been used on Unix systems including SUNS, Kis and IBM ILS-6000's. A
version that runs on PCs under MS-Windows is expected to be available in Summer 1994. The 001 language and its SDE have
been described eLsewhere [Mancoridis 92, Holt 921, so we shall only give an overview here. (See the Appendix for the way to
access the FTP on-line Unix demonstration of 001.)

With the advent of windowing systems, such as Micro Soft Windows for PCs, our students should be aware of the ways In
which windowing facilitates programming. In the case of the OOT SDE, individual windows encapsulate the distinct ideas that
the programmer deals with. For example, each source program object, such as the Account Manager in Figure 1, is displayed
in its own window. There are also windows to show the program's output and to show error messages.

Perhaps 001's most striking use of windows is the Landscape Window. This window displays a diagram (called the
Landscape) with boxes representing the objects and classes in the program. For example, a landscape view might show a
picture much like Figure 1 for the corresponding program. There is a "hot link" that allows the user to immediately access
the source code that corresponds to each box in the diagram.

Another window gives the Process Dump, which Is a stack trace of called procedures that can be used to locate the
current line of execution. There are also windows, called Interface Views, that give the interfaces for objects such as the
Account Manager object (Figure 1). These Interface Views, which are automatically created from the source programs, allow
the programmer to Inspect the entry points (methods) of an object along with corresponding parameter types and comments.
Double clicking on the name of a method in an Interface View causes the corresponding source code to pop up in a window.

001 displays the current directory in a window, much as does a Macintosh. Double clicking on a name in this Viewer
curses a fresh window to be popped up. This new window shows the file's contents. The Directory Viewer serves aS a browser
for inspecting objects and classes, as well as for the on-line language reference manual and for re-use libraries.

Our purpose here is not to describe OOT in any detail 1,liolt 921 but rather clarify how much its facihties may be of help
in teaching programming and Computer Science concepts.

OOT in an Undergraduate Curriculum
This section discusses the use of 001 [Holt 19931 to introduce object-oriented concepts across the undergraduate

curriculum Ilene 91, Reid 92). The following section will focus on use of OOT with high school students.

At the University of Toronto, OOT is used in many courses, including courses on data structures, courses on compilers
and courses on operating systems. We will concentrate here on those courses which have used OOT explicitly for teaching
object-oriented concepts. In particular, we will discuss our use of 001 for teaching these t ,ncepts in (1) an introductory
programming course, (2) a course on programming paradigms and (3) a course on software engineering.

Since Fall 1992, the 001 software development environment has been used in the University of Toronto introductory
classes In the Faculty of Applied Science and Engineering. These classes have followed a fairly traditional approach to
introductory computing at the university level, with emphasis on general computing concepts such as data structuring,
operating systems and networks as well as programming proper. For the first time, in Fall 1993, a unit in one of these chi' ces
is concentrating on object-orientation, with the goal or making students aware of the concepts of objects, classes and
inheritance. The students are required to complete a graphics-based assignment (much like the one described below for the
use in high schools).

When these students are first introduced to 00T,.they use only simple features, including a window containing their
program, an output window and the Directory Viewer.

001 has been digned to be very easy for the novice to use 1Milbrandt 19911. The student begins, with little explicit
Instruction, by using 001's mouse-based Macintosh-like interface. The Turing language's simple input/output and graphics
statements allow students to begin writing programs immediately. For example, here is a complete program that outputs
"lido world" and draws a green box on the screen with opposite corner coordinates at (10, 15) and (100, 120).

put *Hello world"
drawbox (10, 15, 100, 120, Green)

204 National Educational Computing Conference 1994, Boston, MA

BEST COPY AVAILABLE

www.manaraa.com

a

I

,

The 001 system has a pay-as-you-play philosophy that allows students to learn more of the system as they master more
concepts. Only after the fundamentals of programming, including loops, arrays and subprograms, have been taught, are 00
concepts introduced.

Like many Computer Science departments, ours oilers a course on programming paradigms, which is given in the third
year. Our course is actually titled Principles of Programming languages, but its real purpose is to acquaint students with
paradigms such as logic programming (PROLOG), functional programming (LISP), concurrency, and so on.

In a 4-week unit in this course, we use OOT to teach the 00 paradigm. This unit has as its goal to teach design
implications of 00, at a much deeper level than is possible in an introductory course. By the time our students reach this
course, they have had considerable experience with Turing, though not generally its 00 features, so little time is wasted
instructing them about syntactic issues of 00T. Although other languages, such as C++, are mentioned in the unit, only 001
Is covered In any depth. The students' assignments are based on an existing class-intensive program called Star, which reads
OOT programs and automatically creates diagrams on the screen for them that are analogous to Figure 2. The students are
required to enhance this program in various ways, for example, so it outputs PROLOG facts corresponding to the relations
among the OOT program's classes. This work exposes students to many issues of importance to software engineering,
including automatic program diagramming, program maintenance, and multiple views of a program, all within an 00
context.

A fourth year University of Toronto course provides a standard coverage of software engineering concepts [Sommenille
92]. This course uses an 00 approach in the following way. At the beginning of the course, the students are given a set of
milestones representing the phases in the life cycle of a software "product" that teams of three students in the course are
required to create. The product last year was a Graphical User Interface (GUI) library written in OOT targeted for use by
other undergraduates. Ideally, the product would be used by other classes of students to allow them to Incorporate GUI
support (menus, buttons, etc.) as a part of their programs.

The hardest part of the project was the design phase, namely, deciding upon the class hierarchy for user interface
objects. The goal was to provide an interesting exercise In software design, something that is too often missing in
undergraduate education. This project was intended to teach many software engineering concepts including the software life
cycle, team work, delivery of re-usable software, etc., all in a modem 00 environment, namely 001.

This short discussion of use of OOT at the University of Toronto has been intended to illustrate how the teaching 9f 00
concepts is being introduced at the university level. We now turn to the question of teaching these concepts in high schools
[McGregor 1992, Stephenson 1992, Funkhouser 19931.

OOT at the High School Level
Each summer the Department of Computer Science at the University of Toronto teaches a short summer course to

selected high school students on principles of Computer Science. Last summer 62 students participated in this intensive 3-
week course.

For the last two summers, these students have been introduced to 00 concepts, in a unit in this summer course, in the
following way. First the students practice the fundamentals of programming: loops, Ifs, subprograms and simple data
structures, as well as simple graphics. Then, they are exposed to 00 concepts (objects, classes, and inheritance) by means of
an assignment based on a simple class library for drawing figures. This library (see Figure 3) consists of a tree of classes.

7'3E tra\,..Ji"

"Recreating the Revolution" 205

www.manaraa.com

Figure 3. A class hierarchy used for introducing students to 00 concepts.
The arrows show inheritance.

The root of the class tree called Figure. It represents objects that can, in principle, be drawn on the screen and later
erased. The actual bodies for the draw and erase procedures of the Figure class are omitted. In other words, Figure is an
"abstract" (or "virtual") chss that represents all objects that can be drawn and erased, but does not represent any particular
figure. Classes such as Rectangle and Circle, which descend from (inherit from) the Figure class, provide actual code to draw
and erase particular figures. (In the actual assignment, there is also code to set the color, size and position of figures, but
these details will be ignored in this paper.)

The students are provided with a library that implements the hierarchy shown in Figure 3, but without the nappy Face
and Sad Face classes. The students are required to enhance the library with the missing classes and to have their program
draw an interesting scene on the screen using these classes.

Since the assignment is so graphical, it Is easily explained to students. They are clearly pleased with the results of their
work, which displays a picture on the screen. The objective of this exercise is to give introductory students a good feel for 00
concepts, including use of libraries and SDEs.

This experience with high school students suggests that teaching object-orientation at the high school level, using
software support such as that provided by 001, is straightforward and can be quite rewarding to the students. The approach
assumes an initial introduction to fundamental programming ideas and follows Immediately with 00 ideas. The emphasis on
graphis makes the work exciting to the students and makes the ideas much easier to grasp.

Using the experience from these courses, the author has developed a two-week 00 teaching unit for use in high schools.
The unit is supported try a 19 page hand out for the students, which includes exercises. Each concept is first introduced at the
"everyday level", that is, in terms of familiar objects such as radios. Then the students are introduced to the corrponding
00 concept at the level of programming. The students use a collection of classes, similar to the collection described here, to
gain experience with actual GO programming, using the Object-Oriented Turing system. The student should have experience
with a programming language such as Pascal, C or Basic and a familiarity with procedures before covering this unit. The

Appendix tells how to access this teaching material and software.

The state of the art in computer software is constantly changing (Stephenson 19901. We should not be surprised that
there are new ideas, such as 00 concepts, that need to be Introduced Into our schools. The dign of Computer Science
curricula for high schools [Merrit 1993] is a never ending job, repeatedly Introducing new concepts when they are seen to
be intellectually interesting and industrially justified. it seems clear that 00 concepts have now reached this stage, and it is
only a question of how, not whether to introduce thtse Ideas into our schools. The good news Is that 00 concepts can be
nicely Integrated with high school Computer Science teaching without a great deal of change In the approaches we have

already been using.

206 National Educational Computing CoOrence 1994, Boston, AI

BEST COPY AVAILABLE

www.manaraa.com

Conclusions
This paper suggests that, given an appropriate software development environment such as 00T, sophisticated 00 ideas

can and should be taught at the high .,chool level. A radical change Is not required in teaching programming fundamentals.
Instead, once the fundamentals are introduced, a new direction, the 00 direction, is followed in a natural and rewarding way.

References
[Budd 19911 Budd, T. An Introduction to Object-Oriented Programming. Addison-Wesley Publishing Company, Reading,

Massachusetts, 1991.

[Booch 1991] Booch, G. 00ect-Oriented Design with Application,s. Benjamin/Cummings, Redwood City, Calif, 1991.

[Gox 19871 Object-Oriented Programming: An Evolutionary Approach. Addison-Wesley Publishing Company, Reading,
Massachusetts.

[Funkhouser 19931 Funkhouser, C. OOPS? Its Basic, Journal of Computer Science Education, Summer 1993, pp. 21-2-.

[Holt 1988] Holt, R. C. and Cordy, J.R. The Turing Programming Language. Comm. ACM 31, 12 (Dec. 1988), 1410-1 i 23.

[Holt 19921 Holt, R. C. Turing Reference Manual, Third Edition, Holt Software kcsociates Inc., March 1990, 361 pages,
Toronto.

[Holt 19931 Holt, R. C. Introducing Undergraduates to Object Orientation Using the Turing Language, Department of
Computer Science, University of Toronto, July 1993 (unpublished).

[Mancoridis 19931 Mancoridis, S, Holt, R., and Penny, D. A "Curriculum-qcle" Environment for Teaching Programming.
24th SIGCSE Technical Symposium, Assoc. for Computing Machinery, Feb. 18-19, Indianapolis, Indiana, SIGGSE
Bulletin 25, I (Mar. 1993).

[McGregor 1992] The Role of Object-Oriented DeveloPment Techniques in Computer Science Education. John McGregor,
Moderator, Proceedings NECC 92, Dallas, pg. 40.

[Merrit 19931 Merrit, S. AGM Model High School Curriculum, Session in Proceeding of NECC 93, Orando, June 1993.

[Meyer 1988] Meyer, B. OWect-Oriented Software Construction. Prentice-1UB International, London, 1988.

[Milbrandt 19911 Milbrandt, G. Comparison of BASIC, Turing, Pascal and C for Computer Studies Courses, Journal of
Computer Science Education, Summer 1991, pp. 11-14.

[Stephenson 1990] Stephenson, C. Changing Trends in High School Programming, Journal of Computer Science Education,
Winter 1990, pp. 6-11.

[Reid 19921 Reid, R. The Object-Oriented Paradigm in CS1. 24th sIcica Technical Symposium, Assoc. for Computing
Machinery, Feb. 18-19, Indianapolis, Indiana, S1GGSE Bulletin 25, 1 (Mar. 1993), pp. 265-269.

[Sommenille 19921 Sommerville, Ian, Software Engineering, Fourth Edition. Addison-Wesley, 649 pp., 1992.

[Temte 91] Temte, M.c2. Let's Begin Introducing the Object-Oriented Paradigm. SIGSCE Bulletin 23, 1 (March 19911,

[Yoder 19931 Yoder, S. and Moursund, D. Do Teachers Need to Know About Programming? Journal of Computing in Teacher
Education, Vol. 9, No. 3, Sprirrg 1993, pp. 21-26.

Appendix: Access to Teaching Unit and OOT Software
A copy of the two-week unit for teaching 00 concepts is available from the author. A demonstration version of the

Object-Oriented Turing system for MicroSoft Windows can also be requested. This version conies with the collection of

classes used in the teaching unit.

For those people with access to Unix, there is an on-line demonstration version of Unix OOT from the University of
Toronto that can be accessed by anonymous FTP (File Transfer Protocol). The OOT environment has been implemented on
various Unix platforms, such as Sun/4's, RS/6000 and 501. If you have access to the Internet and Unix, you can get

instructions to access the demo by these commands on Unix:

%ftp 128.100.1.192
ftp> cd pub
ftp> get ootDistrib
ftp> quit

The ootDistrib file in your directory will now contain details on getting the demo.

"Recreating the 1?evolution" 207

